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Abstract. We extend an above barrier analysis made with the Schrédinger equation to the Dirac equation.
We demonstrate the perfect agreement between the barrier results and back to back steps. This implies the
existence of multiple (indeed infinite) reflected and transmitted wave packets. These packets may be well
separated in space or partially overlap. In the latter case interference effects can occur. For the extreme case
of total overlap we encounter resonances. The conditions under which resonance phenomena can be observed

is discussed and illustrated by numerical calculations.

PACS. 03.65.Pm; 03.65.Xp

1 Introduction

This paper considers the above barrier solutions of the
Dirac equation for an electrostatic one-dimensional (z
axis) potential,

0, z<0 (regionI),
V(z) =4 W, 0<z<!l (regionll),
0, z>1 (regionIII).

It is very difficult and probably even confusing to treat,
in a single article, all interactions of plane waves or wave
packets with a barrier potential using the Dirac equation.
This is because the physical content depends upon the en-
ergy of the incoming (particle) wave. In the figure below we
depict the three potential regions. Also shown is the energy
divided into three zones.
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The upper energy zone, E > Vj —m, is the one of inter-
est to this work and involves diffusion phenomena. In the so
called Klein zone [1], E < V — m, oscillatory solutions exist
in the barrier region. These are antiparticles [2—6]. Indeed,
antiparticles see an opposite electrostatic potential to that
seen by the particles and hence they will see a well poten-
tial where the particles see a barrier. The antiparticles thus
live above the well potential and are legitimately oscilla-
tory in form. In the tunnelling zone only evanescent waves
exist in the barrier region [7, 8]. Of particular interest here
is the possibility of an Hartman-like effect [9-11].

No barrier analysis can be interpreted without an un-
derstanding of the step potential results. In a latter section,
we shall argue, for the step, that while pair production is
innate in the Klein zone there is no pair production for
above barrier diffusion where the non-relativistic limit re-
produces the standard Schrodinger solutions. There is of
course no Schrodinger limit for the Klein zone. The Klein
zone of the step is characterized by the Klein paradox in
which a reflection probability greater than the incoming
probability occurs. The excess particle number (or charge)
implies pair production. For above step diffusion this para-
dox does not exist and hence pair production is absent.

For the case of above barrier diffusion, we shall demon-
strate in detail the equivalence of a two-step calculation
and the barrier results. Such an equivalence has previously
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been demonstrated for the Schrédinger equation [12]. This
method of calculation which employs the simple step re-
sults is not new. Multiple-step calculations have, for ex-
ample, been used in the WKB applications to various po-
tentials [13] and for the barrier potential in the Dirac equa-
tion in the Klein zone [14]. However, these authors employ
the method only as a convenient mathematical tool. We, on
the contrary, emphasize its physical significance in terms of
multiple reflected and transmitted peaks (when the barrier
width is much greater than the wave packets widths). The
exit times for each can be calculated using the stationary
phase method (SPM) [15,16]. They occur with time inter-
vals equal to twice the barrier width divided by the group
velocity over the barrier.

The combined summed expressions for the reflection
and transmission coefficients contain the well known reson-
ance phenomena. We shall discuss under which conditions
this resonance effect occurs and when the effect “breaks
up” and the multiple peaks appear. Some numerical cal-
culations will help us to illustrate this transition from an
effective single outgoing wave packet (coherence) to essen-
tially independent multiple wave packets (de-coherence).

In the next section we will give the necessary formu-
las and conditions assumed for our calculations. In Sect. 3,
we consider the plane wave solutions for a step potential
and more specifically for three related but distinct steps.
One upward step at z = 0 and two downward steps at z =10
and z =[. The extra phases that appear in the last case
are essential for the calculation of the times of the outgoing
peaks. We will then calculate the back to back step poten-
tial obtaining the individual amplitudes for the (infinite)
reflected and transmitted terms. Each can be associated
with a wave packet after integrating with a suitable convo-
lution function. In Sect. 4, we calculate directly the plane
wave solutions for the reflection and transmission coeffi-
cients for a barrier and make evident their equivalence to
the sum of the results from the previous section. Section 5
discusses the question of resonance and points out that this
phenomenon requires specific conditions to occur. We con-
clude in Sect. 6 with a resumé of our results.

2 Dirac solutions in a constant potential

The free Dirac equation reads

(iv"0u —m)¥(r,t) =0, (1)

with the gamma matrices satisfying {v*, v* } =2¢*". It
has four well known independent plane wave solutions
ub(p) explip-r—iEt], (E=|E|),

and  u®Y(p) exp[ip-r—iEt] (E=-|E|),

where |E| = /p?+m?2. Using the Pauli-Dirac set of

gamma matrices
0 0 o
—1> and v = (—o- 0> ’

1
70: (0
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the spinorial solutions are (for polarized states in the z-

direction)
o)
o-p

_ T F (s
and u“”)(p):N( |E|+v(n)X ) (2)
XS

(s)

X

ul®) (p)=N < o-p
E+m

where s = 1,2 and

@ _ (1 @ _ (0
W= (g) = (7).

with N = /(| E|+ m): the covariant normalization choice
such that u(®) Tu(8) = 4 (5+2)T4,(s+2) = 2 | E|. We recall that
the free Dirac Hamiltonian is
o ([ m o-p

Hy=« p—l—ﬁm—(o_.i) i > . (3)
The different signatures of the energies between s and s+
2 spinors follow readily from the alternative non-covariant
form of the Dirac equation

10:¥(r,t) = Ho¥(r,t), (4)
and the left hand side yields EW¥(r,t) in all four cases
while the right hand size yields + |E| as the case may be.
Actually, for #(*)(r,t) we appear to get a simple iden-
tity because we have conventionally used F rather than
|E| in its spinor representation. However, when p = 0 (the
rest frame case) the Hamiltonian reduces to m~° and the
above equation yields F =+ mfors=1,2and £ = — m for
s+ 2 = 3,4. These solutions are oscillating solutions, valid
when E > m or E < —m. There are also evanescent solu-
tions obtained from the above with the substitution p — ip
for which the spatial dependence becomes exp|[F p| and oc-
curs when —m < E < m.

Since we shall need the solutions for step and barrier
potentials, we rewrite the above solutions in the presence of
a constant potential V. Consider an electrostatic potential
A, = (Ao, 0) included (via minimal coupling) in the Dirac
equation

(i’y“@u—e'yvo—m)W(r,t)zo (5)

iatﬂp("',t) = (HO+%) W(’I‘,t), (6)

where Vo = — e A (charge — e). For a stationary solution
¥ (r,t) x exp[—i E't], we obtain

H()W(’I‘,t) = (E - V()) LD(’I‘, t) .

X(S)> )

(7)

The spinorial solutions are now

@

_ %949 (8)
E—-Vo+m

ul(g; Vo) = N (
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for E — V4 > m, and
Y A B O
4 (q; Vo) = N ( E=Val +m ) Lo
X(s)

for E—Vy < —m, where (E—VO)2 —g>=m2 and N =
v (|E — V5| +m). This shows that the two sets of solutions
u®®) and u(*1t2) are not determined by the sign of E but
by whether E > Vy+m or E <V —m, the latter being the
defining condition for the Klein zone. Hence, E may be
fixed but the solutions depend upon whether in any given
region the energy is above or below the potential.

In any constant potential region only two solutions exist
for a given E (be they oscillatory or evanescent). This fact
is essential for a standard plane wave analysis. Because
the Dirac equation is a first order equation in the spa-
tial derivatives, for a step-wise continuous potential only
continuity of the wave function exists. There is no loss of in-
formation with respect to the Schrodinger continuity (wave
function and its spatial derivative) since continuity of the
“small” component of the Dirac spinor yields in the non-
relativistic limit the continuity of the Schrodinger wave
function’s spatial derivative. Thus, continuity of the Dirac
wave function implies four conditions at each interface, one
for each spinor component. However, since the signs of the
momenta are a priori arbitrary, we have two conditions
which determine the spinor. Hence, for consistency, there
can be only two independent spinors in each region and
these must correspond to different helicity states or orth-
ogonal combinations of them.

3 The two-step approach

Let us treat the barrier diffusions as an application of
a two-step process. We have one upward step at z =0 and
one downward step at z =[. We assume an incoming above
potential, positive helicity, plane wave state given by (the
normalization of the spinor is inessential here)

1
0
P | explilpz—E1)],
E+

0

with E = 1/p2 + m?2. Weshall need three step diffusions, the
first at z = 0 both for incoming waves from the left and from
the right. The second one is at z = [ only for incoming waves
from the left. For reflection and transmission from an up-
ward /downward potential we shall use the suffixes +/—.

V(2)

R (0)+——|—> T (0)

REGION I| REGION II
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Vo
REGION III
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T (0) +——|—> R (0)
Vo

REGION II

REGION II
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V(z)

A
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z
0

For the first step, the solutions in region I and II are
respectively given by

1
0
Ty(z,t) = P | explipz]
E4+m
1
0
+Ry(0) | __ P exp[—ipz]
E+m
0
xexp[—iFEt],
1
0
Uiz, t) =T4(0) q expligzlexp[—iFEt],
E—-Vo+m
0
(10)
with ¢ = /(E —Vp)* —m?2. All helicity (spin) flip terms

(the other independent spinor solutions) here and else-
where turn out to be absent, so we exclude them a priori for
simplicity. Continuity at z = 0 yields

1+ R (0) =T4(0)
wd 1R 0)=7(0) S IEE 1 0) 2
where a = /(E-=Vo+m)(E—m) and
b=+/(E—Vo—m)(E+m) (a>b). Thus, we obtain
Step 1: { E %Zg 7(%(2)* b (11)
from which it follows that
1RO = 2 o)

While |R+(O)|2 is obviously the reflection probability,
the “transmission” probability must therefore be (b/a)
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| T+(0)]2. A demonstration of this for wave packets (albeit
with the aid of some approximations) is given in the ap-
pendix. Since |R4(0)| < 1, we do not have a Klein paradox
here so no pair production is involved.

To understand physically the significance of single re-
flection and/or transmission coefficients one needs to use
the stationary phase method for wave packets (normalized
convolution integral of plane waves). This method, intro-
duced by Stokes and Kelvin [1], estimates the position of
the maximum of the wave packet by using the simple con-
cept that, far from the vanishing derivative of the phase,
the argument of the convolution integral oscillates many
times and produces destructive interference. Consequently,
the maximum of the wave packet occurs where the deriva-
tive of the phase vanishes [16]. For example, consider an
amplitude

@(z,t):/dkg(k) expli0(k)] expli (kz— Et)]

modulated by a real function g(k), with a single steep max-
imum at kg. The time-space relationship for the maximum
(maxima if @ has spinor components) is given by

N ( dk > . ( 49 )
drE /, dE ),
and the zero suffix means that the term in parentheses is
calculated at k = ko. The delay factor is (d6/dE)y. The
group velocity is vy = (dE/dk)o. In our analysis the pri-

mary modulation function, g(p), is that of the incoming
wave packet

“+oo
Princ(z,t) = / dp g(p)
p

min

expli(pz —Et)].

1
0
p
E+m

0

(12)

The “effective” modulation function in any given region
is then given by g Au; where A is the plane wave ampli-
tude (e.g. R4(0) or T4(0)), and wu; stands for the spinor
element considered. For each separate spinor component
one must calculate the group velocity and eventual delay
times. However, with our choice, all non-zero spinor com-
ponents are real, so that there is no contribution to 6 from
them. Thus, with real R1(0) and T (0) we have no time
delay. It is true that the group velocities depend upon the
spinor components momentum dependence (which shifts
the value of ky). However, this should be negligible for
a very sharply peaked modulation function. It is demon-
strably negligible in the two limits: the non-relativistic
(NR) one where one can simply ignore the small com-
ponents, and in the ultra-relativistic (UR) one when the
(“small”) component ¢/(E — Vy 4+ m) tends to one.

Returning to our calculations, we give without details
the results for the other two steps. For step 2, we find

Step 2 : {g—a)i[(b_a)/(a-kb)] exp[2iql],

(1)=[2b/ (a+b)] exp[i(g—p)I], (13)
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and for step 3,

R_(0)=(b—a)/(a+D),

Step 3: { T (0)=2b/ (a+b). (14)

The first of the barrier transmitted amplitudes is thus ob-
tained by multiplying the “transmitted” amplitude of step
1, T+ (0), by the transmission amplitude of step 2, T (1),

[4ab/(a+Db)?] expli(q—p)I] .

The exit time is calculated after including the plane wave
phase in region III,

2 Y
“\ae ),” " \aE ), "

where 6 = (¢ —p) l. Thus, at z =1 we find

(), (2), ()] - (8,0

This is just the time for a wave packet in region II with
group velocity (dE/dq)o to travel a distance I (barrier
width). At step 2 there is also a reflected amplitude given
by T4 (0)R_(I). The corresponding wave packet travels
back towards z =0 and the second reflected wave ex-
its into the left region I, with amplitude (unmodulated)
T (0)R_(I)T—_(0) at the expected time

t=2(dg/dE)o! .

The whole procedure may then be repeated ad infinitum.

Below, we list the first few individual reflected and
transmitted waves together with the expressions for the
general nth wave:

a—b
R =R, (0)= Pl
4ab(b—a :
Ry =T1(0) R-(I)T-(0) = (aﬁ(—ib)f‘) exp[2iql],

Ry =T (0) R-(I) R—(0) R—(I) T-(0)
_4ab(b—a)
~ (a+0b)?

b—a

2
expl2igl] (a+b exp[iqu) |

Ry =T (0) R-()) [R-(0) R-(1)]"7*T-(0)

2n—4
:74?;3)();:) exp[2iql] (Z;Z exp[iql]> .
(15)
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For the transmitted amplitude, we have

Ty =To () T_(1) = —22 expli(g—p)1] ,

(a+0b)?
Ty =T4(0) R_(1) R—(0) T_(1)
4ab . b—a - 2
RECETE exp[i(g—p)I] (a+b exp[lql]) ;
Ts =T (0)[R_(1) R—(0)]>T_(1)

4ab . a
= @ tb? exp[i(q—p)I] (a+b

exp[iqu)4,

T =T (0) [R—(1) R—(0)]" ' T—(1)

2n—2
= azop oPlita-p)l] (Z;Z exp[iql]) :
(16)

At each step one can check (in accordance with our pre-
vious discussion) that probability is conserved. If the in-
dividual wave packets are well separated (see the following
section) the probability of, say, the nth transmitted wave
will be just |Tn|2 since it travels in a potential free region.
A straightforward calculation then shows that the total
transmission probability is,

1_(b—a>4
a+b

It is to be noted that this sum is independent of the bar-
rier width [. A similar calculation can be performed for the
region I reflected probabilities. This yields

e 2 a—>b 2
LN _(a+b)

16a2b% (b—a)? b—a\*
+ (a+b)S / [1_(a+b>

—1
7 |2_ 16 a? b2
" (a+b)t

_ 2ab
T a4
(17)

]2

n=1

(a—b)*
T (18)
Consequently, as expected
e 2 2
S IR Tl =1 (19)
n=1

Our multiple peak interpretation is thus consistent with
overall probability conservation. Finally, we observe that
the time interval At between two successive outgoing
peaks, in either of the potential free regions is

Atzz(ﬂ> 1=2<E_V°> l.
dFE 0 q 0
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4 The barrier analysis

Let us now perform the standard stationary plane wave
analysis for the barrier — again neglecting a priori (for sim-
plicity) spin flip. We have

1 1
0 0
RegionI: 2<0, D exp[ipz]+R | __ P
E+m E+m
0 0
xexp[—ipz],
1
0
RegionIl: 0<z<1, A q exp[iq z]
E—-Vo+m
0
1
0
+B | _ q exp[—igqz],
E-Vo+m
0
1
0
RegionIIl: <z, T p exp[ip z] .
E—(i)—m

Continuity at z = 0 yields

1Y 1 [a+b
R) 94 \a-0

a—Db A
a+b B) -
From continuity at z =1,

(1) (Aemliad )= (1) mestin.

Consequently,

(2)-3 (5 tr) 2 )
x (a}b) T explipl]

_explipl] [(b+a) exp[—iql]
Sl A o

Using this equation to eliminate A and B from the continu-
ity equation at z = 0 gives

(1>:exp[ipl]
R 4dab
><[(a—i—b)2 exp[—igql]— (a—b)? exp[iql] }
(a® —b%) exp[ —igql] - (a® — ) exp[iql] | * °

whence
R=1(b*—a?) sinql] / [2ab coslgl] —i(a®+b%) sin[ql] ] .

(20)
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and

T=2ab exp[—ipl]/ [2ab coslgl] —i(a®+b%) sin[ql] ] .
(21)

These amplitudes satisty,

IR+ |T]=1. (22)
If treated as single wave packets (one for R and one for T')
the peaks emerge at a common time determined by their
common denominators

dé 2 2
tR:tT:( > y with tan@za +
0

i =3 tan[ql] .

Note that the phase factor exp[—ip!] in T has been can-
celled by the plane wave factor exp[ip z] calculated at
z =1. Theifactor in R is momentum independent so it does
not contribute to the time equation. Also for completeness,
we recall that a and b are real.

It is always a little surprising that the two exit times
coincide. It also seems a little strange that the reflection
time delay (tg), compared to instantaneous reflection, de-
pends upon the barrier width . Is the assumption of single
reflection and transmission peaks correct? This depends
critically upon the size/width of the incoming wave packet.
Before discussing further what seems a result contrary to
the infinite multiple waves described in the previous sec-
tion, we must make the following important observation:

(o) (o)
T=> T, and R=)» R,.
n=1 n=1

Indeed while we have begun our analysis from the two-
step calculation we could have arrived at exactly the same
result by expanding the denominators of R and T in an
infinite series. The treatment of R and T as single wave
packets represents the limit situation in which all the in-
finite reflected wave packets overlap and similarly for the
transmitted wave packets. Plane waves can in this sense
be considered as infinitely extended wave packets and they
thus satisfy automatically this coherence condition. The
two approaches are perfectly equivalent. A single peak may
break up under suitable conditions into multiple peaks, or
equivalently, multiple peaks may coalesce under suitable
conditions into a single peak.

(23)

5 Resonance phenomena

One of the characteristics of the single wave packet situ-

ation is manifest in the expressions for R and T'. The reflec-

tion coefficient R vanishes when sin[¢!] = 0. It follows that

for values of [ such that
l=nm/q (n=0,1,...),

we obtain complete transmission. In Fig. 1, we show, for

different values of Vj, Fy and m, the typical resonance
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curves for |T'| (dotted lines). In principle it extends to
infinite values of [. Any normalizing convolution integral
will modify this. First, an integration over p, unless very
“tight” about any po value, will imply some averaging
of this curve. For a spread in momentum Ap such that
Aq > 7 qo the resonance effect will be completely averaged
out. Secondly, for an incoming wave packet with finite spa-
tial spread, say Az ~ 1/Ap, we can ask when the multiple
peaks, described in the previous section, are well sepa-
rated. This occurs when the distance between two peaks is
much greater than Az. Thus, for complete decoherence

1
Vg, 111 At> Az~ A_p ,

where vg 111 is the group velocity in region III and At the
time interval between successive peaks. Now At =21/vg 11,

Transmission Probability vs. 1/ al

6.0 -

+ (0Vo, 0By, mao)
" (30,70,35) -
AMPL: 2

| SHIFT: 4

11 (30,70,30)
© AMPL: 3

SHIFT: 2

(20,50, 25)
AwmPL: 2.5

SHIFT: 1.5

i1 (20,50,20)
AmPL: 5

SHIFT: —2

(10,30, 15)
AMPL: 5

i SHIFT: —3

v (10,30, 10)
. L AmPL: 15
0.4 : SHIFT: —14
02 |
TN N N N (N (NN (N T TN NN T N TN NN Y N Y S T |
0 0.5 1.0 0.5 2.0

Fig. 1. Barrier width dependence of the transmission proba-
bility for different values of 0Vj, 0 Ey and mo (b =c=1). The
transmission probability |T'(pg)|? (see dotted lines) shows the
typical resonance curves for plane waves. In our numerical cal-
culations, performed for asymptotic times, we have used a gaus-
sian incoming wave packet of width o. The transmission prob-
ability v/2/mo [dp expl—a2(p—p0)?] |T(p)|? (see solid lines)
exhibits the tendency to the constant value 2agbg /(a3 +b3) as
predicted by the multiple scattering analysis
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hence multiple peaks will be clearly separated when

21 v
> Az or —>>g—’II U

Vg, 11T
2] &= .
Az " vemr Po

Vg, 11

For a plane wave Az = co. Hence, for plane waves we have
maximum coherence always. For any finite Az, we see that
coherence is lost as [ increases. Decoherence implies (as
proven in the previous section) that the total transmission
probability becomes independent of [ and is given by (17),

oo

STl =

n=1

2ab
a?+b2

This value happens to coincide with |T'| (but not |T|?) at
the mid resonance values where cos[ql] = 0. All of this is
exhibited in our numerical calculations, in Fig. 1, where
the exact value of the transmission probability is plotted
against [. The tendency to a constant value as decoherence
sets in is apparent.

The condition for decoherence is obviously achieved as
I — o0. It is also obtained if Az — 0. However, Az — 0 im-
plies Aqg — oo and we must be careful not to drop below
the A (above barrier) zone. There is also a third limit in
which it occurs: when - g’H — 0. Let us now consider this

last limit in more detall It can be achieved in two different
ways. The first is by sending ¢y — 0 with V} fixed, whence
po — v/ Vo(Vo +m). The second is by keeping ¢ fixed and
sending po(Ep) and Vp simultaneously to infinity so that
Ey — V, remains constant. The first choice is again difficult
to realize because of the Heisenberg uncertainty principle.
To see this concretely, consider a symmetric convolution
function about go(po). As go — 0 so too must Ag — 0, since
we must stay above the tunnelling zone. This means that
automatically we must have Az — co. So contrary to our
expectations we end up in the coherent state. The second
choice however does indeed lead to complete decoherence,
since it can be achieved while keeping the widths of the
wave packets fixed.

6 Conclusions

In this paper we have considered diffusion of an incom-
ing wave (or wave packet) with E > Vy+m by a one-
dimensional potential barrier of height Vi and width [. In
front of and beyond the barrier, the potential is assumed
to be zero (free space). In this study, we have employed
the SPM. There is an inherent ambiguity in this method.
Given a sum of terms, it may be applied individually to
each or to the sum. In the former case a series of wave
packet peaks are determined while in the latter case only
one peak is predicted. It is easy to use the SPM in both the
limit of complete coherence and complete decoherence. It
is difficult to see how to use it for intermediate situations.
In these cases we can fall back upon pure numerical calcu-
lations or possibly use cluster decompositions in which the
wave packets are summed in finite numbers before apply-
ing the SPM. However, this possibility and its viability has
still to be explored.
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The overall reflection and transmission amplitudes (R
and T') are characterized by resonance oscillations and by
the feature that the reflection delay time is equal to the
transmission time; at least when (or to the extent) that
we can consider each a single wave packet. What we have
shown in this paper is that, even with the Dirac equation,
the barrier results can be obtained by treating the bar-
rier as a two-step process. This procedure involves multiple
reflections at each “step” and when [ — oo predicts the
existence of multiple (infinite) outgoing peaks. However,
by simply summing the individual amplitudes, one obtains
exactly the standard barrier results. This has lead us to
postulate and then confirm numerically that with increas-
ing [ the resonance curves will lose coherence and tend to
predicted constant values.

From an alternative, but equivalent viewpoint, it has
also been noted that, whereas one cannot perform the limit
I — oo in the R and T amplitudes, one can expand the de-
nominators, in a natural way, into an infinite series which
reproduces exactly the two-step results. For any finite but
sufficiently large [ we predict the appearance of multiple
peaks of which the first reflected term is simply the single-
step result characterized by “instantaneous” reflection. As
l increases the exit times of the other peaks grow. This sug-
gests that for finite times (or simply ignoring secondary
peaks) the single step is equivalent to a barrier with a suffi-
ciently large width. So not only can we claim to have shown
that a barrier is equivalent to two steps but, at least for
the first reflected wave, that a wide barrier is in its turn an
approximation of a single step.

We shall call upon these results in subsequent work
in which we consider the tunnelling energy zones and the
Klein zone. We consider these energy zones separately
because they are characterized by different physical phe-
nomena (resonance, tunnelling, pair production). For tun-
nelling, we shall be particularly interested in the extension
of the Hartman effect [9—-11] from the Schrédinger equation
to the Dirac equation [7, 8]. This would justify the renam-
ing of the effect to the Hartman paradox since it implies
the existence of super-luminal velocities. Within the Klein
zone we will again use the two-step method described in
this paper.

Appendix

In order to obtain the expression of the transmitted proba-
bility for the step potential case, we consider the following
incident wave packet:

+oo

1
O .
Drinc(2,t) = dp g(p) p exp[i(pz —Et)],
+
0

Pmin E+m

(A1)

where pmin = v/ Vo(Vo+2m) and g(p) is a real function

with a pronounced peak about the value p = py chosen by
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construction such that ~ [ | T+(0) |2 ] 2(Eo — Vo) q0Eo
oo oo ) 0 Eo—Vo+m po(Eo— Vo)
2 p EQ +m
dz |Princ(z,t)| = [ dp ¢ 1+ =
[ a0 = [ ap 20) 14 (52 ] s
2°b
(A2) = [| T+0)|" - ] . (A.4)
0
The transmitted wave packet can then be written as
1
+oo 0 R
eferences
Pu(z,t)= [ dp g(p) T+(0) q
Pmin E—-Vo+m 1. O. Klein, Z. Phys. 53, 157 (1929)
0 2. A. Hansen, F. Ravndal, Phys. Scr. 23, 1036 (1981)
xexpli(qz — Et)] 3. RK. Su, G. Siu, X. Chou, J. Phys. A 26, 1001 (1993)
1 4. B.R. Holstein, Am. J. Phys. 66, 507 (1998)
0 5. H. Nitta, T.Kudo, H. Minowa, Am. J. Phys. 67, 966
N . (1999)
=~ | T+(0) # expliqoz] 6. P. Krekora, Q. Su, R. Grobe, Phys. Rev. Lett. 92, 040406
Sptm (2004)
P=Dpo 7. P. Krekora, Q. Su, R. Grobe, Phys. Rev. A 63, 032107
+o0 po(Bo— Vo) (2001); ibid. 64, 022105 (2001)
X /dp g(p) exp [i(p—po)iz — Et) 8. V. Petrillo, D. Janner, Phys. Rev. A 67, 012110 (2003)
Penin q0Eo 9. T.E. Hartman, J. Appl. Phys. 33, 3427 (1962)
10. V.S. Olkhovsky, E. Recami, Phys. Rep. 214, 340 (1992)
(A.3) 11. S. De Leo, P. Rotelli, Phys. Lett. A 342, 294 (2005)
12. A. Bernardini, S. De Leo, P. Rotelli, Mod. Phys. Lett. A
Consequently, 19, 2717 (2004)
13. A. Anderson, Am. J. Phys. 57, 230 (1989)
+o0o
5 5 Eo— Vo 90 Eo 14. M. Thomson, B.M.J. McKellar, Am. J. Phys. 59, 340
dz |Pn(z,t)| ~||T+(0)] E V. BV (1991)
oo 0 Eo—Vo+m po(Eo—=Vo) 15, 1, Kelvin, Phil. Mag. 23, 252 (1887)
+oo 16. C. Cohen-Tannoudji, B. Diu, F. Laloé, Quantum Mechan-

x [ dp g*(p)

Pmin
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